

Past Papers Standard Grade Jeneral Chemistry $\mathbf{009}$ **Marking Sche** e

2009	ΚU		PS		
General	/30	%	/30	%	
3	19+	63%	20+	67%	
4	14+	47%	14+	47%	
5	11+	37%	12+	40%	
7	<11	< 37%	<12	< 40%	

2009 Standard Grade Chemistry General Marking Scheme								
Question	Answer	Chemistry Covered						
1a	В	Fluorine has the electron arrangement of 2,7 (p6 data booklet)						
1b	E	Noble Gases are unreactive elements, found in Group O						
1c	C+D Both for 1 mark	Groups are vertical columns on the periodic table						
2a	D	Iron is the catalyst in the Haber Process: N_2 + $3H_2 \rightarrow 2NH_3$						
2b	A	MetalMercuryMagnesiumCopperironsilversodiumDensity13.51.748.967.8710.50.97						
2c	F	MetalMercuryMagnesiumCopperironsilversodiumDiscoveryancient1774 (old data booklet)ancientancientancient1807						
За	B+F Both for 1 mark	Variable which is changing: concentration (B is 1 mol/l and F is 2mol/l) Variables remaining the same: particle size (ribbon) and temperature (20°C)						
3b	E	Box E is the fastest reaction: lowest particle size (powder), highest concentration (2mol/l) highest temperature (40°C)						
4a	С	Air contains approx 80% nitrogen and approx 20% oxygen						
4b	В	GasHydrogenOxygenCarbon DioxideGas TestBurns with a popRelights glowing splintTurns lime water milky						
4c	E	glucose + oxygen → carbon dioxide + water C ₆ H ₁₂ O ₆ + 6O ₂ → 6CO ₂ + 6H ₂ O						
4d	В	ACID + METAL> SALT + HYDROGEN						
5a	F	Blast Furnace: iron oxide + carbon iron + carbon dioxide						
5b	D	Galvanising: Zinc coating sacrificially protects iron (or steel) underneath						
6a	В	Compoundlead sulphatesodium chloridecalcium hydroxidepotassium phosphateElementslead + sulphur + oxygensodium + chlorine + oxygencalcium + hydrogen + oxygenpotassium + phosphorus + oxygen						
6b	С	$\begin{array}{cccc} ACID & + & METAL & HYDROXIDE & \rightarrow & SALT & + & WATER \\ & & & & & & & & & & & & & & & & & & $						
7	A , C 1 mark each	 ✓ A Glucose has the formula C₆H₁₂O₆ and is classified as a carbohydrate ☑ B Small carbohydrates like sugars are soluble in water ☑ C Photosynthesis: carbon dioxide + water → glucose + oxygen ☑ D Test for starch: Iodine solution turning blue/black ☑ E Small molecules like glucose are small enough to pass through the gut wall into the blood 						
8	A,E 1 mark each	 A Silver and gold are both transition metals as they are found in the block between groups 2+3 B Silver and gold are metals both conduct electricity C Lead is above both silver and gold in the Reactivity Series D Silver and gold are unreactive metals and do not react with hydrochloric acid E Silver and gold are unreactive metals and are both found uncombined in the Earth's crust 						

Question	Answer	Chemistry Covered				
9a	exothermic	Exothermic Reaction which gives out heat Endothermic Reaction which takes in heat from the surroundings				
9b	Will run out eventually	Finite resources are resources which will not go on for ever and will run out with overuse.				
9с	Crude oil or natural gas	Fossil Fuels: coal, oil, (natural) gas and peat.				
10a	12Metal17Non-metal	Atomic Number: number of protons in an atom Metals are found on the left hand side of STEPS on Periodic Table				
10b(i)	MaCla	Write down Valency below each element's symbolPut in Cross-over ArrowsFollow arrows to get formulaMgCl				
	MgCl2	2 1 2 1 MgCl ₂				
10b(ii)	1412 714	Melting and Boiling points of selected compounds are found on p5 of data booklet.				
10b(iii)	Liquid	At 1000°C: magnesium chloride has melted (mpt=714°C) At 1000°C: magnesium chloride has yet to boil (bpt=1412°C)				
11a	PlasticUsePerspexAdvertising signsPVCArtificial limbsPolytheneCarrier bagsPolystyreneEgg cartons	Problem Solving: Paragraph of information → table				
11b	Gets broken down by bacteria	Biodegradable get broken down by living organisms like bacteria and eventually disappear. Non-Biodegradable Do not get broken down by living organisms like bacteria and last a long time.				
11c	Thermoplastic	Thermoplastic Will reshape/melt on heating Thermosetting Do not reshape/melt on heating				
11d	Styrene	Polymerpoly(ethene)poly(propene)poly(chloroethene)poly(styrene)Monomerethenepropenechloroethenestyrene				
11e	Polymerisation Or Addition Polymerisation	Polymerisation: process where monomers join together to make a bigger molecule (polymer)				
12a	chlorine	Positive electrode: $2Cl^{-} \longrightarrow Cl_{2} + 2e^{-}$ Negative Electrode: $Cu^{2+} + 2e^{-} \longrightarrow Cu$				
12b	electrons	Electrons travel through the wires Ions travel through the solution				
12c	carbon or graphite	Graphite, a form of carbon, is the only non-metal conductor of electricity and is suitable for use as an electrode				
13a	0.8g or the same	Catalysts are chemically unchanged during reactions same mass of catalysts at start and end of reaction				
13b(i)	Cracking	Starting Chemicals large, saturated and less useful Products smaller, more useful and some unsaturated				

13b(ii)	C7H14	C ₇ H ₁₄ : heptene - alkene with general formula C _n H _{2n} C ₉ H ₂₀ : nonane - alkane with general formula C _n H _{2n+2}						
14a	bar chart containing:	¹ / ₂ mark - vertical scale ¹ / ₂ mark - correct labelling of bars 1mark - bars drawn correctly (¹ / ₂ bay error allowed)						
14b	2 atoms joined together	Diatomic molecules have 2 atoms joined together by covalent bonds: Element hydrogen nitrogen oxygen fluorine chlorine bromine iodine Formula H2 N2 O2 F2 Cl2 Br2 I2						
14c	Alloys	Alloys are mixture of metals (or mixture of metals with non-metals) e.g. Steel, stainless steel, brass, bronze, solder, amalgam, cupro-nickel						
14d(i)	Intact tin-layer is barrier to water/air	Tin-layers outside steel will prevent air/water getting to steel underneath and thus prevent corrosion. If the tin layer gets scratched and the steel is exposed to air/water, the iron underneath sacrificially corrodes to protect the tin layer instead.						
14d(ii)	Mg or Zn or Al	zinc, aluminium, magnesium would provide sacrificial protection. Calcium, lithium, sodium, potassium would also provide sacrificial protection to steel but are too reactive to work in practice.						
15a	will run out/need replaced or more expensive than mains	Advantages of BatteriesAdvantages of Mainsportablewill run out/need replacedlow voltagehigh voltages availablesafer						
15b(i)	Value between 0.5V - 2.7V	Magnesium is higher up electrochemical series than iron ∴voltage will be less than 2.7V Tin is lower down electrochemical series than iron ∴voltage will be more than 0.5V						
15b(ii)	Any one from:	Any one from:volume + concentration of electrolytetemperaturedistance between electrodessize of rodsdepth of rod immersion						
16a(i)	man-made or not natural	Synthetic materials are made by the chemical industry and do not occur naturally on Earth						
16a(ii)	Potassium K or phosphorus P	3 essential elements for plant growth are: Potassium, Phosphorus and Nitrogen						
16b	Ammonia or NH3	ammonium + calcium nitrate + hydroxide						
17a	Biological catalyst	Enzymes are biological catalysts which are designed to work best at 37°C						
17b	C3H6O3 any order of elements is acceptable	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						

17c	Sugar/Glucose is used up by fermentation or So alcohol is not produced or So sugar would not ferment	glucose C ₆ H ₁₂ O ₆	no air enzymes	→ etha ► 2C2H	nol + 50H +	carbon di 2CC	ioxide) ₂	
18a	check colour chart against colour to get pH number	The colour obtained in the gas jar is matched against the colours on the pH colour chart. The corresponding number is the pH of the solution.						
18b	any pH less than 7	Phosphorus oxide is a non-metal oxide. Non-metals oxides dissolve in water to form acids e.g. CO2, NO2 and SO2 (but not CO)						
18c	it is insoluble	Aluminium oxide is insoluble (p8 of data booklet)						
19a	higher the number of carbons, the lower the octane number	For both alkanes and alkenes, every time a carbon is added to the chain length, the octane number falls each time.						
19b	99-108	Answer must be higher than 98						
19b	99-108	Alkene No. of Carbons	Propene 3	Butene 4 08	Pentene 5 03	Hexene 6 85	Heptene 7 75	
			ave	rage			75	
		Difference:	105	/) [:]				
19c	octane number of alkanes lower than octane number of alkene	The octane num number of corr	nber of a respondin	n alkane i g alkene	- s always	lower tha	n octane	

